Clique

Release 1.3.0

August 31, 2014

Contents

1 Guide
1.1 Introduction e e e e e e e e e e
1.2 Installation e e e e e e
1.3 Tutorial e e
1.4 Assembly L e e e e e e e
1.5 CollectionS e e e e

2 Reference
2.1 CliquUe . .o i e e e e e e e e e e e e e

3 Glossary
4 Indices and tables

Python Module Index

NN bW W

13

17

19

21

Clique, Release 1.3.0

Manage collections with common numerical component.

Contents 1

Clique, Release 1.3.0

2 Contents

CHAPTER 1

Guide

Overview and examples of using the system in practice.

1.1 Introduction

Clique is a library for managing collections that have a common numerical component.

A numerical component is any series of numbers in an item. The item sc010_020_v001.0005.dpx has four possible
numerical components (bolded):

* 5¢010_020_v001.0005.dpx
* 5¢010_020_v001.0005.dpx
* 5¢010_020_v001.0005.dpx
* 5¢010_020_v001.0005.dpx
A common use would be to determine sequences of files on disk. For example, given the following input:
* file.0001.dpx
¢ file.0002.dpx
* file.0001.jpg
* file.0002.jpg
Clique can automatically assemble two collections:
* file.[index].dpx
* file.[index].jpg
where [index] is the commonly changing numerical component.

Read the Tutorial to find out more.

1.1.1 Copyright & License

Copyright (c) 2013 Martin Pengelly-Phillips

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this work except in compliance
with the License. You may obtain a copy of the License in the LICENSE.txt file, or at:

http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

Clique, Release 1.3.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.2 Installation

Installing Clique is simple with pip:

$ pip install clique

If the Cheeseshop (a.k.a. PyPI) is down, you can also install Clique from one of the mirrors:

S pip install --use-mirrors clique

Alternatively, you may wish to download manually from Github where Clique is actively developed.
You can clone the public repository:

$ git clone git://github.com/4degrees/clique.git

Or download an appropriate tarball or zipball
Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages:

S python setup.py install

1.2.1 Dependencies

e Python >=2.6,<3
For testing:

e Pytest >=2.3.5

1.3 Tutorial

This tutorial gives a good introduction to using Clique.
First make sure that you have Clique installed.

Clique revolves around creating collections of items that all have a commonly changing numerical component. Clique
itself does not care what the numerical component represents. It could be a frame index for a sequence of files or a
version number in a list of versioned files.

The easiest way to create these collections is to assemble () them from arbitrary items.
First, import clique:

>>> import clique

Then define the items to assemble (could be the result of os.1istdir () for example):

>>> items = [/file.0001.]Jpg’, ’_cache.txt’, "file.0002.jpg’,
"foo.l.txt’, "file.0002.dpx’, ’"file.0001.dpx’,
"file.0010.dpx’, ’"scene_vl.ma’, ’'scene_v2.ma’]

Finally, assemble them into collections:

4 Chapter 1. Guide

http://www.pip-installer.org/
https://github.com/4degrees/clique
https://github.com/4degrees/clique/tarball/master
https://github.com/4degrees/clique/zipball/master
http://python.org
http://pytest.org
http://docs.python.org/library/os.html#os.listdir

Clique, Release 1.3.0

>>> collections, remainder = clique.assemble (items)
>>> for collection in collections:
print repr(collection)
<Collection "scene_v%d.ma [1-2]">
<Collection "file.%04d.dpx [1-2, 10]">
<Collection "file.%04d.jpg [1-2]">

Notice how the items _cache.txt and foo.1.txt didn’t form any collections (and were added to remainder).
This is because _cache . txt has no numerical component and was ignored, whilst foo.1.txt resulted in a col-
lection with only one item and was filtered out of the result.

The minimum items filter can be altered at assembly time:

>>> collections, remainder = clique.assemble(items, minimum_items=1)
>>> for collection in collections:
print repr(collection)
<Collection "scene_v%d.ma [1-2]">
<Collection "foo.%d.txt [1]1">
<Collection "file.%04d.dpx [1-2, 10]1">
<Collection "file.%04d.jpg [1-2]">

See also:
There is a full guide to Assembly available.
Each collection holds various properties to describe the items it contains:

>>> collection = collections[0]
>>> print collection.head
scene_v

>>> print collection.tail

.ma

>>> print collection.padding

0

>>> print collection.indexes
[1, 2]

See also:
There is a full guide to Collections available.

It is also possible to parse a string (such as that returned from Collection. format) to create a collection. To do
this, use the parse () function:

>>> collection = clique.parse(’ /path/to/file.%04d.ext [1, 2, 5-10]")
>>> print repr(collection)
<Collection "/path/to/file.%04d.ext [1-2, 5-10]">

It is also possible to pass in a different pattern to the default one:

>>> collection = clique.parse(
" /path/to/file.%04d.ext [1-10] (2, 8)°
"{head} {padding}{tail} [{range}] ({holes})’
)
>>> print repr(collection)
<Collection "/path/to/file.%04d.ext [1, 3-7, 9-10]">

1.3. Tutorial 5

Clique, Release 1.3.0

1.4 Assembly

As seen in the Turorial, Clique provides the high-level assemble () function to support automatically assembling
items into relevant collections based on a common changing numerical component:

>>> import clique
>>> collections, remainder = clique.assemble ([
"file.0001.7jpg’, "file.0002.]jpg’, 'fi1le.0003.7jpg’,
"file.0001.dpx’, "file.0002.dpx’, ’'file.0003.dpx’
1)
>>> print collections
[<Collection "file.%$04d.dpx [1-3]">, <Collection "file.%04d.jpg [1-3]1">]

Note: Any items that are not members of a returned collection can be found in the remainder list.

However, as mentioned in the /ntroduction, Clique has no understanding of what a numerical component represents.
Therefore, it takes a conservative approach and considers all collections with a common changing numerical compo-
nent as valid. This can lead to surprising results at first:

>>> collections, remainder = clique.assemble ([
"file_v1.0001.jpg’, 'file_v1.0002.jpg’, 'file_v1.0003.3jpg’,
"file_v2.0001.jpg’, "file_wv2.0002.9pg’, "file_v2.0003.jpg’
1)
>>> print collections
[<Collection "file_v1.%04d.Jjpg [1-3]">,
<Collection "file_v2.%04d.Jjpg [1-3]1">,
<Collection "file_v%d.0001.3jpg [1-2]">
<Collection "file_v%d.0002.3jpg [1-2]">
<Collection "file_v%d.0003.3jpg [1-2]">

]
Here, Clique returned more collections that might have been expected, but, as can be seen, they are all valid collections.

This is an important feature of Clique - it doesn’t attempt to guess. Instead, it is designed to be wrapped easily with
domain specific logic to get the results desired.

There are a couple of ways to influence the returned result from the assemble () function:
* Pass a minimum_items argument.

* Pass custom patterns.

1.4.1 Minimum Items

By default, Clique will filter out any collection from the returned result of assemble () that has less than two items.
This value can be customised per assemble () call by passing minimum_items as a keyword:

>>> print clique.assemble ([’ file.0001.Jpg’]) [0]
L]

>>> print clique.assemble ([’ £ile.0001.Jpg’], minimum_items=1) [0]
[<Collection "file.%04d.Jjpg [1]1">]

1.4.2 Patterns

By default, Clique finds all groups of numbers in each item and creates collections that have common head, tail and
padding values.

6 Chapter 1. Guide

Clique, Release 1.3.0

Custom patterns can be used to tailor the process. Pass them as a list of regular expressions (either strings or
re.RegexObject instances):

>>> items = [
"file.0001.3jpg’, "file.0002.7jpg’, ’'£i1i1e.0003.3jpg’,
"file.0001l.dpx’, "file.0002.dpx’, "file.0003.dpx’
1)
>>> print clique.assemble (items, patterns=][
"\. (?P<index> (?P<padding>0*) \d+) \.\D+\d?$’
1) [0]
[<Collection "file_v1.%04d.Jpg [1-3]1">,
<Collection "file_v2.%04d.Jpg [1-3]1">]

Note: Each custom expression must contain the expression from DIGITS_PATTERN exactly once. An easy way to
do this is using Python’s string formatting.

So, instead of:

"\ . (?P<index> (?P<padding>0x+) \d+) \.\D+\d?$"’

use:

"NL{0}\.\D+\d?$’ . format (clique.DIGITS_PATTERN)

Some common expressions are predefined in the PATTERNS dictionary (contributions welcome!):

>>> print clique.assemble (items, patterns=[clique.PATTERNS[’' frames’]]) [0]
[<Collection "file_v1.%04d.Jpg [1-3]1">,
<Collection "file_v2.%04d.jpg [1-3]1">]

1.4.3 Case Sensitivity

When assembling collections, it is sometimes useful to be able to specify whether the case of the items should be
important or not. For example, “file.0001.jpg” and “FILE.0002.jpg” could be identified as part of the same collection
or not.

By default the assembly is case sensitive, but this can be controlled by setting the case_sensitive argument:

>>> jtems = ['file.0001.jpg’, 'FILE.0002.7Jpg’, ’"file.0003.]Jpg’]
>>> print clique.assemble (items, case_sensitive=False)
[<Collection "file.%04d.Jjpg [1-3]">]1, []

>>> print clique.assemble (items, case_sensitive=True)
[<Collection "file.%04d.jpg [1, 3]1">], ['FILE.0002.73pg’]

A common use case might be to ignore case sensitivity when on a Windows or Mac machine:

>>> import sys
>>> clique.assemble (
items, case_sensitive=sys.platform not in ('win32’, ’darwin’)

1.5 Collections

A collection holds items that all have a single common numerical component, whose value differs between each item.

Each collection comprises three main attributes:

1.5. Collections 7

http://docs.python.org/library/re.html#re.RegexObject

Clique, Release 1.3.0

* head - The common leading part of each item.

* tail - The common trailing part of each item.

* padding - The width of the index (to be padded to with zeros).
Given items such as:

¢ file.0001.jpg

* file.0002.jpg
The head would be £ile., the tail . jpg and the padding 4.

Note: If the numerical component is unpadded then the padding would be 0 and a variable index width supported.

A collection can be manually created using the Col lection class:

>>> import clique
>>> collection = clique.Collection(head='"file.’, tail=’.7jpg’, padding=4)

1.5.1 Adding & Removing Items

Items can then be added to the collection:

>>> collection.add (' £ile.0001.9pg”)

If an item does not match the collection’s expression a CollectionError is raised:

>>> collection.add (' £file.0001.dpx")
CollectionError: Item does not match collection expression.

Whether an item matches the collection expression can be tested ahead of time if desired using match () :

>>> print collection.match(’£ile.0002.jpg’)
<_sre.SRE_Match object at 0x0000000003710D78>
>>> print collection.match(’£ile.0002.dpx")
None

To remove an item:

>>> collection.remove (' £ile.0001.3pg’)

If the item is not present, a CollectionError is raised:

>>> collection.remove (' £ile.0001.3pg’)
CollectionError: Item not present in collection.

1.5.2 Accessing ltems

To access items in the collection, iterate over it:

>>> collection.add(’£file.0001.9pg”)
>>> collection.add ('’ file.0002.9pg’)
>>> for item in collection:

ce print item

file.0001.jpg

file.0002. jpg

8 Chapter 1. Guide

Clique, Release 1.3.0

Note: A collection may be sparse and so is not directly indexable. If you need to access an item by index, convert the
collection to a list:

>>> print list (collection) [-1]
file.0002. jpg

1.5.3 Manipulating Indexes

Internally, Clique does not store the items directly, but rather just the properties to recreate the items (head, tail,
padding). In addition it holds a sorted set of indexes present in the collection.

This set of indexes can be manipulated directly to perform the equivalent of adding and removing items (perhaps in
bulk).

>>> print collection.indexes

[1, 2]

>>> collection.indexes.update([2, 3, 41])
>>> for item in collection:

Ce print item

file.0001.jpg

fi1le.0002. jpg

fil1le.0003. jpg

file.0004.jpg

Note: It is not possible to assign a new index set directly:

>>> collection.indexes = set ([1l, 2, 31)
AttributeError: Cannot set attribute defined as unsettable.

Instead, first clear and update the set as required:

>>> collection.indexes.clear ()
>>> collection.indexes.update (set ([1, 2, 31)

1.5.4 Formatting
It is useful to express a collection as a string that represents the collection expression and ranges in a standard way.
Clique supports basic formatting of a collection through its format () method:

>>> collection = clique.Collection(’file.’, ’.jpg’, 4, indexes=set ([1l, 2]))
>>> print collection.format ()
file.%04d.jpg [1-2]

The format () method can be passed an alternative pattern if required:

>>> print collection.format (’ {head} [index] {tail}’)

file.[index] . jpg

The passed pattern should match the formatting rules of Python’s standard string formatter and will have the following
keyword variables available to it:

e :term:‘head’ - Common leading part of the collection.

e :term: ‘tail* - Common trailing part of the collection.

1.5. Collections 9

Clique, Release 1.3.0

e :term:‘padding ‘ - Padding value in $0d format.

* range - Total range in the form start-end

* ranges - Comma separated ranges of indexes.

* holes - Comma separated ranges of missing indexes.

1.5.5 Structure

Clique makes it easy to get further information about the structure of a collection and act on that structure.

To check if a collection contains items that make up a contiguous sequence use is_contiguous ():

>>> collection =

clique.Collection(’ file.’,

>>> collection.indexes.update([1, 2, 3, 4, 51)
>>> print collection

file.%04d.jpg [1-5]

>>> print collection.is_contiguous ()

True

>>> collection.indexes.discard(3)
>>> print collection

file.%04d.3pg [1-2,

4-5]

>>> print collection.is_contiguous ()

False

’

jpg’, 4)

To access the missing indexes in a non-contiguous collection use the holes () method (which returns a new

Collection):

>>> missing = collection.holes()
>>> print missing.indexes

[3]

To separate a non-contiguous collection into a number of contiguous collections use the separate () method:

>>> subcollections
>>> for subcollection in subcollections:
print subcollection

file.%04d.jpg [1-2]
file.%04d.Jjpg [4-5]

= collection.separate()

And to merge compatible collections into another use the merge () method:

>>> collection_a
>>> collection_b

clique.Collection(’file.’,
clique.Collection (/' file.’,

>>> print collection_a.indexes

[1, 2]

>>> collection_a.merge(collection_Db)
>>> print collection_a.indexes

(1, 2, 4, 5]

" .Ipg’y,
".Jpg’,

4,
4,

set ([1,
set ([4,

21))
51))

Note: The collection being merged into is modified in-place, whilst the collection being merged is left unaltered.

A collection can be tested for compatibility using the is_compatible ()

>>> collection_a
>>> collection_b
>>> collection_c

clique.Collection(’ file.’,
clique.Collection(’file.’,
clique.Collection(’file.’,

".Jpg’,
" .Jpg’,
! .dpx’,

4,
4,
4,

method:
set ([1,
set ([4,
set ([4,

21))
51))
51))

10

Chapter 1. Guide

Clique, Release 1.3.0

>>> print collection_a.is_compatible (collection_b)
True
>>> print collection_a.is_compatible (collection_c)
False

1.5. Collections 11

Clique, Release 1.3.0

12 Chapter 1. Guide

CHAPTER 2

Reference

API reference providing details on the actual code.

2.1 clique

clique.DIGITS_PATTERN = ‘(?P<index>(?P<padding>0*)\\d+)’
Pattern for matching an index with optional padding.

clique .PATTERNS = {‘frames’: ‘\\.(?P<index>(?P<padding>0*)\d+)\\\D+\d?$’, ‘versions’: ‘v(?P<index>(?P<padding>0+)\
Common patterns that can be passed to assemble ().

clique.assemble (iterable, patterns=None, minimum_items=2, case_sensitive=True)
Assemble items in iterable into discreet collections.

patterns may be specified as a list of regular expressions to limit the returned collection possibilities. Use this
when interested in collections that only match specific patterns. Each pattern must contain the expression from
DIGITS_PATTERN exactly once.

A selection of common expressions are available in PATTERNS.

Note: If a pattern is supplied as a string it will be automatically compiled to a re . RegexOb ject instance
for convenience.

When patterns is not specified, collections are formed by examining all possible groupings of the items in
iterable based around common numerical components.

minimum_items dictates the minimum number of items a collection must have in order to be included in the
result. The default is 2, filtering out single item collections.

If case_sensitive is False, then items will be treated as part of the same collection when they only differ in
casing. To avoid ambiguity, the resulting collection will always be lowercase. For example, “item.0001.dpx”
and “Item.0002.dpx” would be part of the same collection, “item.%04d.dpx”.

Note: Any compiled patterns will also respect the set case sensitivity.

Return tuple of two lists (collections, remainder) where ‘collections’ is a list of assembled Collection in-
stances and ‘remainder’ is a list of items that did not belong to any collection.

clique.parse (value, pattern="{head}{padding}{tail} [{ranges}]’)
Parse value into a Collection.

Use pattern to extract information from value. It may make use of the following keys:

13

http://docs.python.org/library/re.html#re.RegexObject

Clique, Release 1.3.0

*head - Common leading part of the collection.
*tail - Common trailing part of the collection.
epadding - Padding value in $0d format.
erange - Total range in the form start-end.
eranges - Comma separated ranges of indexes.

*holes - Comma separated ranges of missing indexes.

Note: holes only makes sense if range or ranges is also present.

2.1.1 collection

class clique.collection.Collection (head, tail, padding, indexes=None)

Bases: object
Represent group of items that differ only by numerical component.

__init__ (head, tail, padding, indexes=None)

Initialise collection.
head is the leading common part whilst fail is the trailing common part.

padding specifies the “width” of the numerical component. An index will be padded with zeros to fill this
width. A padding of zero implies no padding and width may be any size so long as no leading zeros are
present.

indexes can specify a set of numerical indexes to initially populate the collection with.

Note: After instantiation, the indexes attribute cannot be set to a new value using assignment:

>>> collection.indexes = [1, 2, 3]
AttributeError: Cannot set attribute defined as unsettable.

Instead, manipulate it directly:

>>> collection.indexes.clear ()
>>> collection.indexes.update([1, 2, 3])

head

Return common leading part.

tail

Return common trailing part.

match (item)

Return whether ifem matches this collection expression.

If a match is successful return data about the match otherwise return None.

add (item)

Add item to collection.

raise CollectionError if item cannot be added to the collection.

remove (item)

Remove item from collection.

raise CollectionError if item cannot be removed from the collection.

14

Chapter 2. Reference

Clique, Release 1.3.0

format (pattern="{head}{padding}{tail} [{ranges}]’)
Return string representation as specified by pattern.

Pattern can be any format accepted by Python’s standard format function and will receive the following
keyword arguments as context:

*head - Common leading part of the collection.

*tail - Common trailing part of the collection.
*padding - Padding value in $0d format.

erange - Total range in the form start-end
eranges - Comma separated ranges of indexes.

*holes - Comma separated ranges of missing indexes.

is_contiguous ()
Return whether entire collection is contiguous.

holes ()
Return holes in collection.

Return Collection of missing indexes.

is_compatible (collection)
Return whether collection is compatible with this collection.

To be compatible collection must have the same head, tail and padding properties as this collection.

merge (collection)
Merge collection into this collection.

If the collection is compatible with this collection then update indexes with all indexes in collection.
raise CollectionError if collection is not compatible with this collection.

separate ()
Return contiguous parts of collection as separate collections.

Return as list of Collect ion instances.

2.1.2 error

Custom error classes.

exception clique.error.CollectionError
Bases: exceptions.Exception

Raise when a collection error occurs.

2.1.3 sorted_set

class clique.sorted_set.SortedSet (iterable=None)
Bases: _abcoll.MutableSet
Maintain sorted collection of unique items.

__init__ (iterable=None)
Initialise with items from iterable.

2.1. clique 15

http://docs.python.org/library/exceptions.html#exceptions.Exception

Clique, Release 1.3.0

add (item)
Add item.

discard (item)
Remove item.

update (iterable)
Update items with those from iterable.

2.1.4 descriptor

class clique.descriptor.Unsettable (label)

Bases: object
Prevent standard setting of property.
Example:

>>> class Foo (object):
x = Unsettable ('x")

def _ init_ (self):
self.__dict_ ["x'] = True

>>> foo = Foo ()
>>> print foo.x
True

>>> foo.x = False

AttributeError: Cannot set attribute defined as unsettable.

__init__ (label)
Initialise descriptor with property label.

label should match the name of the property being described:

x = Unsettable (’'x’")

16

Chapter 2. Reference

CHAPTER 3

Glossary

contiguous When all items in a collection are sequential with no missing indexes. For example, /, 2, 3 is contiguous
whilst 7, 3 is not.

head The common leading part of items in a collection. For example, the items file.0001.jpg, file.0002.jpg,
file.0003.jpg have a head value of file.

padding The width of the numerical index in a collection. Each item’s index will be padded with zeroes to match
this width. A padding of 4 would result in / becoming 0001. A padding of 0 means no width is defined and an
index can be any width so long as it has no preceding zeroes.

tail The common trailing part of items in a collection. For example, the items file.0001.jpg, file.0002.jpg, file.0003.jpg
have a tail value of .jpg

17

Clique, Release 1.3.0

18 Chapter 3. Glossary

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

19

Clique, Release 1.3.0

20 Chapter 4. Indices and tables

Python Module Index

C

clique,
clique.

d

clique.

e

clique.

S

clique.

13
collection, 14

descriptor, 16

error, 15

sorted_set, 15

21

	Guide
	Introduction
	Installation
	Tutorial
	Assembly
	Collections

	Reference
	clique

	Glossary
	Indices and tables
	Python Module Index

